Thermometry at the nanoscale.
نویسندگان
چکیده
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale. Luminescent thermometers encompass organic dyes, QDs and Ln(3+)ions as thermal probes, as well as more complex thermometric systems formed by polymer and organic-inorganic hybrid matrices encapsulating these emitting centres. Non-luminescent thermometers comprise of scanning thermal microscopy, nanolithography thermometry, carbon nanotube thermometry and biomaterials thermometry. Emphasis has been put on ratiometric examples reporting spatial resolution lower than 1 micron, as, for instance, intracellular thermometers based on organic dyes, thermoresponsive polymers, mesoporous silica NPs, QDs, and Ln(3+)-based up-converting NPs and β-diketonate complexes. Finally, we discuss the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution.
منابع مشابه
Temperature mapping of operating nanoscale devices by scanning probe thermometry
Imaging temperature fields at the nanoscale is a central challenge in various areas of science and technology. Nanoscopic hotspots, such as those observed in integrated circuits or plasmonic nanostructures, can be used to modify the local properties of matter, govern physical processes, activate chemical reactions and trigger biological mechanisms in living organisms. The development of high-re...
متن کاملNanoscale thermal probing
Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface im...
متن کاملRecent Developments in Micro and Nanoscale Thermometry
One of the key issues related to studies in microscale heat transfer is the ability to measure temperature at small scales. In the recent past, rapid and signi cant progress has enabled temperature measurements to be made with unprecedented high spatial and temporal resolutions. This has allowed heat transfer research to enter a new regime which was previously inaccessible. This article review...
متن کاملC2nr30663h 4799..4829
Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples...
متن کاملPhonon Transport through Nanoscale Contact in Tip-Based Thermal Analysis of Nanomaterials
Nanomaterials have been actively employed in various applications for energy and sustainability, such as biosensing, gas sensing, solar thermal energy conversion, passive radiative cooling, etc. Understanding thermal transports inside such nanomaterials is crucial for optimizing their performance for different applications. In order to probe the thermal transport inside nanomaterials or nanostr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 16 شماره
صفحات -
تاریخ انتشار 2012